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Artificial intelligence (AI) methods have been the subject 
of intense interest in ophthalmology and eye care (1-5). 
This interest parallels the increasing impact of AI across 
many domains, including healthcare (6). The availability 
of machine-learning (ML) frameworks and increasing 
compute power promise to empower an ever-broader range 
of people to become AI practitioners (7-9). At the same 
time, technology employing AI is being assessed in clinical 
settings, such as diabetic retinopathy screening (10,11).

However, understanding has not kept pace with technological 
development, including within the eye care community. 
Many clinicians and researchers do not fully understand the 
technology, nor its strengths and limitations (12). Thus there 
is a growing need to understand AI methods, the related 
concepts of ML and deep learning (DL), and to be able to 
use that knowledge to rigorously evaluate (as readers or 
reviewers) publications describing AI technology in eye care.

This review aims to act as a primer on these technologies, 

with an eye towards the relevance of  AI towards 
ophthalmology applications. The goals of the review are: 
to explain the important concepts (e.g., AI, ML, and DL) 
in non-technical terms; to walk through the typical process 
by which AI technology is currently developed and readied 
for deployment; to highlight the current state-of-the-art in 
the deployment of this technology; and to describe both the 
great potential and possible pitfalls of this technology.

Overview of AI

AI can be broadly defined as technology that produces 
intelligent behavior, i.e., decision-making behavior that is 
comparable to that of humans or other animals. However, 
AI also encompasses a diverse range of technologies, some 
of which may not closely match popular conceptions of 
intelligence. For instance, computer vision is a field of 
AI that aims to develop algorithms to interpret images. 
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Computer vision includes tasks such as identifying objects 
in “natural” images (e.g., trees in a landscape or cars on a 
road). However, this process is so intuitive for humans that 
it may not traditionally be considered “intelligent” behavior, 
though vision in humans is a complex process from the 
neurobiology perspective.

Machine learning (ML) is a subset of AI technologies 
that focuses on developing systems whose performance 
improves with experience: that is, the system learns from 
examples instead of being programmed directly. ML systems 
can take a range of different inputs, and learn an association 
between those inputs and a desired set of outputs. In ML 
applications for medicine, inputs may be images [e.g., color 
fundus photographs, optical coherence tomography (OCT) 
scans, visual field maps (13,14)], or other types of data such 
as text-based radiology reports (15,16). Outputs may also 
vary from diagnoses to the estimation of refractive error, 
or the risk of future adverse events such as cardiovascular 
outcomes or disease progression (17-20). 

ML systems may be trained using methods that can be 
broadly categorized as supervised learning or unsupervised 
learning. Supervised learning involves providing the system 
with explicit feedback (“supervision”) as to the correct 
output for every example. For instance, early in the training 
process, an image classifier may guess at the correct output 
(e.g., whether an image contains a cat), after which it gets 
feedback as to whether this guess was correct. By contrast, 
unsupervised learning involves learning about the structure 
of data, without requiring knowledge about the correct 
outputs (21,22). Without the benefit of labels, unsupervised 
learning tends to require more data than supervised 
approaches. To benefit from the best of both approaches, a 
hybrid of both approaches (semi-supervised learning) exists, 
but has so far been used less commonly in ophthalmology.

ML models employ a range of algorithms to generate 
predictions1 and learn about data. Much recent interest has 
focused on the subset of ML called deep learning (DL), 
which has both supervised and unsupervised forms, and 
has emerged over the past decade as a powerful approach. 
DL is in fact a recent variant of an approach that has been 
in practice since at least the 1950s, often referred to as 
connectionism (23). This approach involves the construction 
of artificial neural networks. These networks are comprised 
of groups of computing units (called “nodes” or “neurons”) 

which are interconnected in particular arrangements. Most 
commonly, neural networks are arranged in a hierarchy of 
sequential “layers”. Nodes in each layer process input data, 
perform localized processing independently, and output to 
the next layer. At the top of the hierarchy are output layers, 
whose nodes represent the model predictions. DL is so 
named because it uses “deep” networks with many layers 
in the hierarchy. Though there are many variants of these 
methods that leverage more complex connection patterns 
(24-26), the basic principles of connected compute nodes 
remain true across DL methods.

Developing a deep learning model

The final developed DL system is also termed a “model”. 
As an illustrative example, we shall consider an example 
in which a DL model is trained to detect the severity of 
age-related macular degeneration (AMD; Figure 1). Note 
that this is an example of a supervised learning task: The 
network to be trained takes as input pixels in the image and 
outputs the model’s predicted likelihood for each AMD 
severity level (none, early, intermediate, advanced dry, 
advanced wet; Figure 1A). 

The goals of training the model are: to have these predicted 
likelihoods reflect the actual likelihoods for each retina image; 
and to ensure that, once trained, the model will also provide 
accurate predictions for other images it has not seen before. 

A schematic of our example DL model is shown in  
Figure 1A. The DL model comprises many layers of nodes, 
starting with an input layer, proceeding through a number of 
intermediate, hidden layers, and ending with a final output 
layer which provides the model prediction. In our example, 
the input nodes take individual pixel values from the input 
image and perform localized processing, such as comparing 
the values of nearby pixels. Each node (“neuron”) decides 
how much to fire (“activate”) by integrating information 
from all its inputs. The intermediate activations are further 
processed to nodes in hidden layers, whose activations may 
reflect the presence of localized image features, such as 
edges or curvature. As information progresses to higher 
layers, the visual features which would maximally activate 
each node become progressively more complex, until they 
may reflect the presence of pathology relevant to AMD 
grading. Finally, a classifier node summarizes the evidence 

 
1 Though “predictions” classically imply to make statements about the future, this term is used in ML to indicate the ML algorithm 
making a prediction about input data for which it does not “know” the correct answer.
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for each possible diagnosis to generate the final predicted 
likelihood of every AMD grade.

So far, we have discussed how neural networks are 
comprised of connected compute nodes, and how layers of 
these nodes can process information to describe richer and 
richer concepts. This arrangement of the nodes—including 
the number and arrangement of nodes in layers, and the 
types of functions that perform localized calculations on 
each feature—is called the neural network architecture. Each 
calculation may contain parameters; for example, a simple 
mathematical formula like y=2x+3 has the “architecture” of 
multiplication and addition, and has two parameters, “2”, and 
“3”. Generally, a modern neural network can contain millions 
or billions of these parameters. An important contrasting 
point between the architecture and the parameters is that 
while architectures are often pre-specified for a project at the 
outset, the parameters are learned from the data during the 

process of training the network.
What actually happens to an artificial neural network 

as it is trained? In the case of supervised learning, during 
the training process, the model makes guesses as to an 
appropriate output and receives feedback based on the 
correctness of the guess (Figure 1B). The feedback is then 
used to modify the parameters to reduce the error. By 
repeating this process thousands to millions of times (spread 
across many different labeled examples), the network 
gradually becomes more accurate.

Note that the outputs in this example is a set of predicted 
likelihoods: Rather than specify a single guess, such as 
“advanced dry AMD”, the model estimates the likelihood of 
each category of AMD severity. In the example retina image 
shown at the top of Figure 1B, the model may provide scores 
of (0, 0.1, 0.1, 0.6, 0.2), indicating roughly a 10% likelihood 
of early AMD, 10% intermediate AMD, 60% advanced 

Figure 1 (A) Schematic illustration of a DL network. In our example AI system, pixels from a retinal fundus image are fed into the input 
layer of a DL network. The pixel intensities are processed by hidden layers, and an output is produced with five numerical values: The 
network’s predicted likelihood for each AMD severity level. (B) Schematic illustration of training process for a supervised learning task. In 
this example, the DL network predicts AMD scores for labeled fundus images, one at a time. After making the prediction, the reference 
standard label for the model is provided (as a set of scores, set at 1 for the actual level of severity—wet AMD in the illustrative example—and 
0 for other categories). A feedback signal based on the difference between actual and predicted scores is then fed into the network, and used 
to update the parameters (represented by arrows in the diagram). The process continues with the next example, until the practitioners decide 
to stop the training process and evaluate the trained model.
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dry AMD, and 20% advanced wet AMD. Ultimately, those 
using the model will want to determine how to convert 
these likelihoods to a single severity level for the given case; 
however, that process is often a separate step from training, 
which generally optimizes continuous scores.

Continuing our AMD example, suppose the true grade 
(or “class” in ML terminology) for the first example is 
advanced wet AMD. (This might be determined by a panel 
of retina specialists, or a reading center; see the section titled 
“What is needed to develop AI technology in eye care?” 
below.) The training process would represent this true 
value as a set of values for each severity level: (0, 0, 0, 0, 1)  
to indicate 100% certainty of being advanced wet AMD and 
0% for the other categories.

From this true value and the predicted scores, the model 
can compute a feedback signal that is then fed back to 
the AI model, and used to update its parameters. A large 
feedback signal might indicate that the predictions are way 
off, and parameters may need to be updated substantially, 
while a smaller signal might cause finer adjustments to the 
model. In this example, the model may not have learned 
enough information to distinguish wet from dry AMD, and 
the feedback can impact how it makes these classifications 
for future images. The precise formula for computing the 
feedback signal varies depending on the model. Though the 
specifics of the mathematics may differ, similar feedback 
is used for the predictions of continuous values [e.g., for 
quantifying volumes of retinal subcompartments from OCT 
scans; (14)].

The manner by which parameters are adjusted, and in 
which training proceeds in general, is also determined by 
hyperparameters: these are choices set by the researcher. By 
contrast, parameters are learned directly from the data. The 
neural network architecture is a hyperparameter. Another 
example of a hyperparameter is the rate at which the model 
updates its parameters for a given feedback, termed the 
learning rate. Too fast of a learning rate may cause the 
network to “overshoot” the optimal parameters, while too 
slow of a learning rate will take a prohibitively long time to 
train the network.

The many parameters and hyperparameters of modern 
neural networks have the immense advantage of enabling AI 
to recognize highly complex patterns, including visual patterns 

that are so intuitive to humans. However, this power also 
increases the potential to fit “too well” to the training dataset 
and generalize poorly, a phenomenon called overfitting.

To help protect against overfitting, ML practitioners 
tend to split the dataset used to develop the model into 
a training set that is used to learn the parameters, and a 
tuning set2 that is used to select or “tune” hyperparameters. 
A separate “clinical validation” set is typically used to 
assess the model’s performance on an independent dataset. 
Because of the ability of modern neural networks to overfit, 
neither the training nor the tuning sets should be used to 
make statements about the model’s performance. More 
importantly, the final validation dataset should be reserved 
for the final evaluation of the model, after all decisions 
affecting the model’s hyperparameters have been made, and 
the model’s parameters have been finalized. 

Evaluating AI model performance

Depending on the nature of predictions an AI model makes, 
a range of different metrics may be employed for evaluation. 
In the case of numeric predictions (e.g., age, refractive 
error), performance may be assessed by the mean error—
the average absolute difference between the predicted and 
actual values in a validation set. Numeric predictions may 
also be analyzed using the R2, the square of the correlation 
coefficient between predicted and actual values for each 
example, which measures the amount of variance in the 
true values that the predicted values explains [e.g., (17,18)]. 
Other evaluation methods include the Bland-Altman plot 
that helps to assess for bias in error at the lower or higher 
ends of the scale (27).

In the case of AI models that make binary predictions—
such as the presence or absence of a specific pathology—
performance is often described using sensitivity and 
specificity (Figure 2A). These metrics report the accuracy of 
a binary classification with respect to a reference standard, 
separately for positive cases (sensitivity) and negative 
cases (specificity). Reporting these metrics separately, 
rather than overall accuracy, is often preferred, because 
the patient impact of low sensitivity can be different from 
that for low specificity; and these tradeoffs depend on the 
clinical context. For instance, in screening situations, high 

 
2 Terminology varies across studies. In ML, the datasets are named training, (ML) validation/tuning, and test/holdout set. In the clinical 
literature (for example derivation of risk scores), there is no tuning dataset, and the datasets are named development/derivation and 
(clinical) validation.
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sensitivity may be preferred, since the cost of missing a 
candidate may be higher; while when deciding on a surgical 
intervention, high specificity may be preferred, in order to 
prevent avoidable surgery (12). 

Binary task performance is usually further described 
using a set of metrics based on the receiver operating 
characteristic (ROC) curve, which was originally derived 
from signal detection theory (28,29). This theory aims to 
quantify how well a signal may be distinguished from non-
signal, given that both can be noisy and uncertain.

For instance, consider an ophthalmologist detecting a 
microaneurysm (MA) on a retina image. These features are 
visually small, and on some images may look similar to image 
artifacts; it can be hard to determine with high confidence 
whether a given feature is an MA. By chance, some features 
actually caused by artifacts may appear more like an MA; 
and some actual MAs may appear more like artifacts. How 
can we quantify how well images from a given camera enable 
ophthalmologists to detect MAs, given this uncertainty? 

Signal detection metrics address this issue by considering 
how performance varies across a range of possible internal 
thresholds (Figure 2). Internally, the theory considers an 
internal response to a given stimulus: This is a continuous 

value that represents the total evidence for a feature. In 
our example, an ophthalmologist reviewing a case will have 
some internal sense of how strongly the image suggests an 
MA; as the feature looks more like one, this signal goes up. 
The signal may be higher or lower across different images, 
but will be higher on average when there actually is an MA, 
and lower when there isn’t (Figure 2B).

The amount of information available will determine 
how well-separated the internal responses to positive and 
negative cases are. A better camera, for instance, may make 
the difference between MAs and artifacts more distinct. But 
for a given amount of information, different observers (like 
doctors) may use different internal thresholds. (Thresholds 
are also termed “cutoffs”, and “cut-points” in the literature.) 
For very low thresholds, all examples will be called positive: 
This implies catching all true cases (100% sensitivity), but 
overcalling all false cases (0% specificity, or alternately, a 
100% false positive rate). As the threshold increases, there 
will be fewer false positives (increased specificity), but there 
may start to be more false negatives (decreased sensitivity). 
When the threshold is very high, all cases would be marked 
negative: the system will have 100% specificity but 0% 
sensitivity.

Figure 2 Illustration of metrics classifying binary task performance. (A) Comparing a set of binary yes/no diagnoses (from a clinician or AI 
model) against a clinical reference standard. Red denotes positive cases; blue negative cases. The definition of sensitivity and specificity are 
illustrated relative to these labels. (B) The distribution of suspicion signal for negative (blue curve) and positive (red curve) cases, as used in 
signal detection theory. The dotted line indicates a threshold used to determine whether a case is positive or negative; this threshold may 
vary across different clinicians, and may be set for an AI model. Bottom illustration shows the breakdown of cases from each distribution, 
relative to the thresholds: TN = true negative; FN = false negative; TP = true positive; FP = false positive. (C) Illustration of hypothetical 
ROC curves. The two curves illustrate the tradeoffs between sensitivity and specificity for different thresholds. The two colored curves 
represent two classifiers that have different classification performance: The green curve represents a classifier with strong separation of 
positive and negative suspicion scores (reflected by a high AUC of 0.96); while the black curve represents a classifier with weaker separation 
between the curves (reflected by a lower AUC of 0.64). Illustrations in (B) based on (28).
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We can quantify the performance across thresholds 
using an ROC curve3 (Figure 2C). These curves plot the 
sensitivity against 1-specificity across all thresholds for a 
given set of internal responses. We show two curves here; 
in our example, these could represent two different cameras 
that enable better (green curve) or poorer (black curve) 
discrimination between MAs and artifact. Each point on an 
ROC curve is termed an operating point: This represents 
one particular threshold on an internal response, and a 
corresponding tradeoff between sensitivity and specificity. 
The overall performance of each curve is quantified by the 
area under the curve (AUC). This area ranges from 0 to 
1.0. Values around 0.50 indicate chance performance at a 
task; systems with these values are no better than flipping 
a coin. Values lower than 0.50 are systematically incorrect. 
Although there is no absolute threshold for a “good” AUC 
(it depends critically on the problem), AUCs above 0.7 are 
considered “acceptable discrimination” (30).

Why now? A historical overview of AI in eye care

The app l i ca t ion  o f  computer  image  ana ly s i s  to 
ophthalmological imagery goes back to at least the 1980s 
(31,32). However, earlier methods tended to focus on more 
constrained tasks, and have substantially lower documented 
performance, than recently-developed methods such as 
DL (4,5,33). For instance, recent DL-based approaches 
can diagnose a range of diseases using images on a range of 
patient populations, using a range of cameras [cf. (5,34)].

Early ML applications relied heavily on “hand-crafted” 
features, which are explicitly determined by the practitioner 
before training a model. For instance, Algazi et al. (31) 
analyzed stereo optic disc images, but depended on careful 
manual alignment of images, along with high-pass filtering 
and a carefully-specified calculation of expected optic cup 
depth as assessed by stereo displacement.

By contrast, DL models use as features the raw pixels in 
the image, and learn what visual features are most relevant 
to the task, without requiring manual specification of these 
features. This flexibility has several consequences. It reduces 
the required manual labor and domain knowledge to apply 
ML to a task: Practitioners no longer need to specify in 
advance what information in an example may be diagnostic 

for an output; they just need a large number of labeled 
examples. DL can enable higher performance by allowing 
the model to learn what the discriminative features are. In 
doing so, DL allows for the possibility of models learning to 
perform tasks that humans are unable to at present (17,35).

In order to be able to learn on raw features like pixels, 
DL models typically require abundant compute resources 
to perform many iterations of learning, as well as a large 
number of labeled examples to learn from. The former 
requirement was a more significant constraint prior to the 
past decade; but access to compute resources has become 
increasingly available, and this has driven part of the growth 
in usage of DL. By contrast, access to well-labeled datasets 
varies across applications. Often, identifying a large and 
representative set of well-labeled cases for training is the 
key requirement for developing an ML model for a specific 
task.

Why ophthalmology is well-positioned for AI 
technology

Against the backdrop of growing interest in deep learning 
for medicine, ophthalmology has emerged as a field with a 
number of important seminal contributions (1-5,7,10,14,17). 
There are a number of reasons for this. As noted, ML 
methods and DL in particular, require large datasets with 
reliable, clinically-relevant labels. This requirement is met 
in eye care by the growing demand for eye care, particularly 
for diabetics, and the corresponding rise in “store and 
forward” teleretinal screening.

Due to the high prevalence of diabetes-related eye 
conditions such as diabetic retinopathy (DR) and diabetic 
macular edema (DME) (36,37), large-scale screening 
programs are being implemented in countries across the 
globe in order to provide essential eye care for patients at 
risk of vision loss. This trend is coupled with a lack of access 
to trained eye care specialists in many of the same regions 
that have high diabetes prevalence (36,38). As a result of 
this mismatch between need and availability of care, cloud-
based teleophthalmology services have emerged to enable 
remote grading of images by specialists. This in turn has 
produced large curated datasets, with labels by experts in 
the diagnosis of these conditions.

 
3 The name “receiver operating characteristic” derives from historical reasons; they were originally derived to quantify information 
broadcast over noisy radio channels. Also due to historical practice, they generally show increasing false positive rate along the X axis; 
specificity is 100% minus this, so many ROC curves in clinical journals will mark this axis “1-Specificity”.
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Ultimately, this has enabled ML practitioners to develop 
high-quality models for detecting DR and DME (4,5,33). 
Following upon the success of these models, recent 
efforts have expanded to a range of conditions, including 
AMD (39-42), glaucoma (5,34,43-45), and retinopathy 
of prematurity (46-49), among others. At the same time, 
efforts around AI technologies for DR/DME have begun 
to progress into real-world settings, with clinical screening 
programs (11) and a U.S. Food and Drug Administration 
(FDA) pivotal trial (3).

What is needed to develop AI technology in eye 
care?

Any AI-powered technology for eye care will need to 
operate in real-world clinical circumstances. This can place 
significant constraints to consider when developing these 
technologies, over and above those driven by technical 
considerations. We consider both sets of concerns here, 
with specific attention to cases where technical and real-
world considerations interact.

Before implementing an AI model, many inputs are 
needed. These include, first and foremost, a well-defined 
clinical problem. What is the existing need the technology 
will address? It is also useful to separately consider the 
prediction problem itself—which the AI system will directly 
provide—and the clinical context in which the prediction is 
deployed.

For instance, many models have been developed for 
predicting DR risk (3-5,8). For this same prediction problem, 
however, there may be distinct clinical problems being 
solved: The goal may be to increase accuracy of diagnosis 
in a primary care setting in an automated fashion (3);  
to assist experts with diagnosis (50); to scale expertise to 
places with low eye care access, such as remote screening 
programs (11); or triaging cases which require urgent 
attention, among others. Understanding up front which 
task the technology aims to address may affect subsequent 
decisions around framing of the prediction task, what data 
to use, and validation approaches.

After determining the clinical problem that the AI model 
is intended to solve, the steps needed to prepare input data 
for an AI model are:

(I)	 Obtaining a labeled set of examples. These examples 
should be labeled according to a consistent set 
of guidelines related to the clinical task; e.g., the 
International Clinical Diabetic Retinopathy (ICDR) 
scale for DR (51). It is also important to ensure that 

the patient population is representative of the actual 
clinical population, such as based on demographics 
or disease subtype. Statistical techniques [e.g., (52)] 
may sometimes be used to improve the precision of 
estimates in rarer subgroups.

(II)	Partitioning the labeled set into development 
and validation sets. The development set is often 
subdivided into training and tune sets, as described in 
the “Developing a deep learning model” section above. 
These subsets should be independent at the patient 
level: no patients used for training or tuning should 
be used for the final evaluation of the model, or else 
the model performance may be exaggerated due to 
memorizing details about particular patients (53).

(III)	Optional, but increasingly common: Obtaining a 
high-quality reference standard for the validation 
sets. These reference standard labels are used to 
provide a more clinically-relevant and rigorous 
assessment of the model’s performance. Reference 
standards are specific to each clinical problem. 
Reference standards may be derived from: 
standardized reading at established reading centers (3);  
information from other modalities [e.g., OCT or 
visual field mapping for models trained on fundus 
images (34,54)]; or expert adjudication (3,33).

The process by which labeled datasets are obtained 
can vary dramatically across efforts, and may potentially 
represent the most significant factor in developing a 
successful model. For some efforts, public datasets are 
available for use (55). In other cases, obtaining a labeled 
dataset requires a large and potentially complex labeling 
effort. Labeling data can be labor-intensive, both in terms of 
collecting a large number of labels (4,5), and in some cases 
collecting a complex set of labels to help assess a complex 
diagnosis [e.g., glaucoma; (34,45)]. 

In addition to these inputs, practitioners must make a 
number of decisions around the development of the ML 
model: 
	 An ML implementation framework. For example, 

many DL models are built using open-source 
frameworks such as TensorFlow (56), Keras (57), or 
PyTorch (58);

	 A choice of model architecture. In ophthalmology, 
many successful implementations use standardized, 
“off-the-shelf” architectures, such as Inception 
(24,59,60) or ResNet (25). These are architectures 
that were previously developed and validated on 
computer vision challenges (61,62);
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	 Hyperparameters for how the learning process will 
proceed (see above).

During the implementation, practitioners may check 
tuning set metrics (such as the AUC; see “Evaluating AI 
model performance” above) on training and tune sets. At 
some point, they must determine that a model is “good 
enough” for final evaluation, reporting, and possible further 
development. For the iterative training methodology used 
in most DL approaches, this is typically a point at which 
the model performance is not increasing substantially for 
the train or tune sets; and the performance on the train and 
tune sets is not diverging (which is a sign of overfitting).

Once an AI model has been trained, it should be evaluated 
on an independent validation set. This typically includes 
plotting an ROC curve, and reporting the AUC. It may also 
include identifying an operating point at the ROC curve 
for which the performance would be useful in a clinical  
context (12); for instance, if a screening program could accept 
a 3% false positive rate, the operating point at 97% specificity 
may be used, and the sensitivity reported (indicating what 
fraction of positive cases would be successfully detected). 

Deploying AI models

Another consideration for a model’s clinical utility is how 
its performance relates to that of clinicians performing 
the same task. Papers reporting these models may present 
the operating points of individual clinicians, or sometimes 
groups of clinicians, on the same plot as the ROC curve4 
(4,5,33,45,64,65). A range of statistical tests, based on 
contingency tables and/or regression models, have been 
devised to explicitly test differences in performance between 
AI models and readers (66-69).

When an AI algorithm has been shown to perform as 
well or better than clinicians, there is often interest in 
deploying it into clinical settings. This process is still in 
its early days: Very few clinical efforts currently use AI 
methods, with the efforts mostly being used in clinical trials 
for screening (11,64,70). In the US, there is currently one 
FDA-approved device for DR screening [IDx-DR; (3)]. The 
impact of deploying these devices remains to be seen. 

Some factors may influence the success of an AI clinical 

deployment. One factor is the use case: Is the AI intended 
to create new clinical workflows or improve existing 
workflows? In some contexts, creating a new automated 
workflow to screen patients using AI may enable clinicians to 
direct their attention to the highest risk patients and hence 
make more efficient use of scarce clinician expertise (6).  
In other cases, however, it may either be more feasible 
or impactful, to augment clinicians via AI assistance, 
while deferring the decision-making to human judgment. 
Here, the clinical benefit is viewed to be in “up-leveling” 
performance of clinicians with less training; for instance, AI 
systems operators at primary care sites (3). 

Initial test deployments of AI models have also highlighted 
some challenges. In a diagnostic study at a primary care 
practice, Kanagasingam and colleagues (70) found that while 
an AI-based system correctly identified 2 of 193 patients with 
referable DR (high sensitivity), it also falsely identified 15 
cases of non-referable DR (low specificity), many of which 
appear to have resulted from low image quality (e.g., dirty 
lens) and related artifacts. This resulted in a low positive 
predictive value. It is also possible that selection of a different 
model operating point may have avoided some of the false 
referrals. These considerations need to be weighted for 
future deployments of AI into clinical settings.

What’s next? Future challenges and concerns

While there has been rapid and impressive progress in 
developing AI systems for eye care, much remains to be done 
for this technology to fulfill its promise. AI technology has 
the potential to improve quality of life through more accurate 
and earlier diagnosis of conditions; through increasing access 
to eye care; through potentially empowering patients with 
tools to understand their data; and potentially through other 
mechanisms not yet elucidated (6). Yet there are many critical 
steps before this technology is broadly deployed and used in 
real-world settings.

A central consideration is building trust in AI systems 
as they are deployed. Without trust in the system, there is 
a real risk that such systems may be under-utilized, and/or 
adversely affect diagnostic performance (71). Depending 
on the method of deployment, many methods may be 

 
4 One may ask, why are individual clinicians’ performance summarized as single points rather than ROC curves like the model? This 
depends on whether clinicians are providing explicit judgments as to whether a condition is present, as opposed to a continuous suspicion 
score. In some studies in radiology, for instance, clinicians provide a value of a continuous suspicion score, which can be used to evaluate a 
per-clinician ROC curve [e.g., (63)].
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used to help engender trust. In assisted-read or other 
human-in-the-loop systems, explanation methods may 
help clinicians understand and properly utilize predictions 
from AI systems. These methods provide support for an 
AI system’s predictions, using different forms of feedback. 
Many methods focus on attribution of pixels in an image 
which maximally informed a prediction (72). Other 
methods, applied in other medical domains, include using 
structured text data (such as radiology reports) and relating 
them to images to provide text descriptions supporting a 
prediction [e.g., describing the likely location and type of a  
fracture (73)]; or showing images that are determined to be 
similar to the one a clinician is examining (74). Simpler forms 
of explanatory support, such as indicating the range of model 
scores for a multi-class prediction such as DR, may also help 
clinicians better understand a model’s certainty in a given 
case; and have been demonstrated to improve performance 
in simulated settings (50). In addition to explaining a model’s 
predictions in a specific case, careful training of human 
operators to use AI tools has been recommended to avoid 
misapplication of a model’s predictions (75).

As AI systems are deployed, another consideration will 
be preventing unintended bias in the performance of these 
systems (76,77). AI systems trained on eye data from one 
patient population may not necessarily generalize to another 
population; and systems trained on images taken with one set 
of equipment may not translate to other equipment. Programs 
deploying this technology should assess performance across 
these varying conditions by testing performance on secondary 
validation sets (datasets that are drawn from a separate 
population, and/or using different equipment, from the ones 
the model is trained on). Several recent studies have assessed 
generalization across patient population and camera type, 
showing robust generalization (5,64).

Further assessment of bias may be done using newly-
developed explanation methods, which can assess how a 
trained AI system’s predictions may relate to pre-defined 
concepts (78). This approach, for instance, can determine 
the extent to which an AI model trained to determine 
if an image of a person is a doctor is influenced by the 
gender of the person. Within the ophthalmology domain, 
this approach has been applied to DR severity diagnoses, 
confirming that a trained AI model is affected by many of 
the same concepts that doctors are trained in, such as the 
presence of MAs, hemorrhages, and neovascularization. 
Future applications of these methods may help ensure 
deployed AI systems provide a consistently high standard of 
care for all patients.

While substantial future efforts will revolve around 
developing AI for existing indications, other future work 
may focus on developing new capabilities. In addition to 
existing work demonstrating the use of AI systems to predict 
factors like cardiovascular risk (17), refractive error (18),  
or anemia (35), ophthalmological imagery may predict 
other signals relevant to a patients’ treatment. Initial work 
on identifying risk factors for progression of AMD from 
dry-type to the more severe wet-type (19,20,79) suggests 
one possible future direction for work of this nature. 
These new methods hold the potential to extend the 
range of clinical practice: more than simply performing 
diagnostic tasks currently performed by clinicians 
consistently at scale, these newer methods may enable 
earlier, preventative care or rapid responses to changes in 
patient disease trajectory.

In conclusion, AI technology holds an exceptional 
degree of promise across the practice of health care, 
including eye care. Yet, these are still very much early days. 
As this review is written, only the very first prospective 
validations of AI technology into clinical settings have been 
completed. Notably, assessment of clinical impact in terms 
of patient outcomes have not yet been performed. Careful 
examination of these efforts, coupled with thoughtful 
development of new technologies, can help ensure that the 
use of AI in ophthalmology is viewed as a highly positive 
development for eye care providers and patients alike. 
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